

1 of 10

			TEST R		
			Client Saint Gobain Per Test OL10-0108	formance Plastics Of 1	0 Orfield Laboratories Inc
APPEN	NDIX A: MEASURE	EMENT SETUP			
		Enviro	nment		
	Temperature	it /	68°F [20.0°C]		
	Relative Fulfilu	ity	55%		
	Specimen Area	Specime	en Area		
	Specifier Area		107.310 [17.42111]		
	Cha	mber Volume - Ai	rborne Transmission		
	Receiving Roor	/olume n Volume	2019 ft ³ [57.2 m ³] 8079 ft ³ [228.8 m ³]		
	Cha Source Room \	amber Volume - Ir /olume	npact Transmission		
	Receiving Roor	n Volume	2019 ft ³ [57.2 m ³]		
INSTR	UMENTATION				
	Description	Brand	Model	S/N	
-	Calibrator	Brüel & Kjær	Type 4230	584761	
	Microphone	Brüel & Kjær	Type 4134	558007	
	Preamplifier	Brüel & Kjær	Type 2639	1202479	
	Rotating Boom	Brüel & Kjær	Туре 3923	2036583	
	Microphone	Brüel & Kjær	Type 4134	1478843	
	Preamplifier	Brüel & Kjær	Type 2639	1312237	
	Rotating Boom	Brüel & Kjær	Туре 3923	890569	
	Analyzer	Brüel & Kjær	Type 2133	1389369	
		NVPIKI	ക്ര		
		NVLAP Lab Co	bae 200248-0		

Е S Т R Ε Ρ 0 R Т Project Sound Transmission 6 Saint Gobain Performance Plastics Of 10 Orfield Laboratories Inc Client OL10-0108 Test **APPENDIX B: CALCULATION RESULTS** STC Freq. Specimen 95% Flanking Band Limit Defic. T.L. Conf. (dB) (Hz) (dB) (dB) (dB) 25 28.8 § 31.5 35 21.7 40 33 50 27.9 § 35 63 33.6 § 42 80 27.7 ±1.63 40 100 33.5 ±1.15 44 125 36.1 48 8 ±0.95 160 39.7 § ±1.27 47 7 200 45.1 § ±1.24 48 5 250 ±0.65 54 3 49.8 § 58 315 52.7 § ±0.65 3 3 400 56.0 § ±0.62 62 500 62.1 § ±0.40 67 ±0.50 630 69 66.5 § 800 72 69.5 § ±0.40 1000 ±0.25 73 70.2 § 1250 70.8 § ±0.25 72 74 1600 73.1 § ±0.32 2000 74.4 § ±0.44 78 2500 76.5 § ±0.35 81 3150 81.8 § ±0.31 81 4000 82.9 *§ ±0.49 78 5000 82.9 *§ 77 ±0.35 73 6300 79.8 *§ 8000 76.7 *§ 69 10000 71.3 *§ 61 Total deficiencies below STC contour (dB) 29 STC contour [ASTM E413] 60

* Actual transmission loss of specimen may be higher than measured at this frequency band. Signal-to-noise in the receiving room less than 5 dB, therefore the result is "an estimate of the lower limit".

§ Actual transmission loss of specimen may be higher than measured at this frequency band. Result within 10 dB of flanking limit found in separate study, therefore the result may be "potentially limited by the laboratory" due to flanking around the specimen.

Note: 95% Confidence from room qualification data. Flanking Limit from chamber flanking measurements. Data available upon request. Extended frequency results below 80Hz and above 5000Hz for reference only.

NVLAP Lab Code 200248-0

Т	Е	S	т	R	Е	Ρ	0	R	т	
		-								

Project Sound Transmission

Saint Gobain Performance Plastics Of 10 Client

Orfield Laboratories Inc OL10-0108 Test

7

Freq. Band (Hz)	Normalized Level (<i>L</i> _n) (dB)	95% Confidence (dB)	IIC Deviations (dB)
			(*)
25			
31.5	74.7		
40	69.5		
50	69.2	±0.5	
63	67.5	±0.6	
80	61.9	±0.7	
100	62.0	±0.4	8
125	62.2	±0.2	8
160	60.7	±0.8	7
200	57.8	±1.1	4
250	52.4	±0.5	-
315	43.7	±0.5	-
400	42.4	±0.4	-
500	39.7	±0.3	-
630	31.5	±0.2	-
800	27.4	±0.1	-
1000	21.7	±0.2	-
1250	20.4 *	±0.2	-
1600	20.0 *	±0.1	-
2000	21.7 *	±0.1	-
2500	21.5 *	±0.1	-
3150	19.3 *	±0.2	-
4000	17.3 *	±0.2	
5000	19.2 *	±0.3	
6300	20.1 *		
8000	21.3 *		
10000	20.9 *		
Total devia	27		
IIC contour	58		

* Actual impact isolation of specimen may be higher than measured at this frequency band. Signal-to-noise in the receiving room less than 5 dB, therefore the "background noise level was too high".

Note: 95% Confidence from room qualification data. Data available upon request. Extended frequency results below 50Hz and above 5000Hz for reference only.

Project Sound Transmission

R E

Saint Gobain Performance Plastics Of 10 | Orfield Laboratories Inc

O R

8

Ρ

Test OL10-0108

E S T

Т

Client

APPENDIX C: SPECIMEN ASSEMBLY DESCRIPTION

The following table shows the description of the floor / ceiling assembly.

Overall Mass = 1698.4 lb [770.4 kg] Overall Surface Density = 9.06 PSF [44.23 kg/m²]

	Mass	Surf. Dens.
Element	lb [kg]	PSF [kg/m ²]
0.281" (9/32") laminate flooring	241.0 [109.3]	1.29 [6.28]
1.5" (2 x 3/4") OSB GG Sandwich; 3" Screw @ 12" O.C.	813.3 [368.9]	4.34 [21.18]
2 x 10 wood joists @ 16" O.C.	183.0 [83.0]	0.98 [4.77]
(6.25") R19 kraft-faced CertainTeed glass fiber batt insulation	52.5 [23.8]	0.28 [1.37]
GGC Noiseproofing Clips RC @ 48" O.C.; 1.625" drywall screw @ 48" O.C.	1.2 [0.5]	0.01 [0.03]
(7/8") hat channel	20.4 [9.3]	0.11 [0.53]
0.625" (5/8") type X gypsum board; 1.625" drywall screw @ 12" O.C.	387.0 [175.5]	2.06 [10.08]

FLOORING

Tongue and groove 9/32" laminated flooring was installed floating on the OSB sandwich sub-floor.

FRAMING AND SUB-FLOOR

The laminated Green Glue sub-floor panels were supplied by the client. All other construction materials were acquired by the construction contractors through construction material suppliers. The framing and sub-floor were constructed for previous tests in this series for this client, and portions of this specimen assembly were used in subsequent tests in the series. In order to maximize the volume of the lower reverberation room (impact receiver room, airborne source room), the 2 x10 framing was constructed above the floor test opening and rested on its perimeter. The 2x10 joists were spaced at 16" O.C. The exposed vertical perimeter of the rim joists was covered by several additional layers of materials to prevent airborne flanking through the sides of the test sample. The additional layers consisted of a second 2x10 joist screwed in place and damped with Green Glue damping adhesive. Over that a 1" sandwich (2 x .5") of Green Glue-damped cement board was attached with screws. All gaps and seams were filled with Green Glue Noiseproofing Sealant.

The sub-flooring was 2 layers of tongue-and-groove OSB laminated with Green Glue. The OSB sandwiches were fastened directly to the joists with 2", #9 screws spaced 12". The seams of the sub-floor were sealed with Green Glue Noiseproofing Sealant. The OSB sandwiches were laminated with Green Glue at approximately 1.8 oz per square foot. The panels were pre-assembled and dried longer than the period required by ASTM E90.

INSULATION

6-1/4" Kraft-faced glass fiber insulation batts were friction fit in each joist cavity. The insulation batts had an R-value of R19.

EST REPOR

Project Sound Transmission

Client Saint Gobain Performance Plastics Of 10 Test OL10-0108

10

Orfield Laboratories Inc

APPENDIX D: SINGLE-NUMBER CALCULATION TO ISO 717-1

Freq.	R _i	Ref	Unfav.	L _{i1}	L _{i1} - R _i	L ₁₂	L _{i2} - R _i
Band	$(R_i \equiv TL)$	Curve	Deviat.	Spectrum	Level	Spectrum	Level
(Hz)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
50	27.9						
63	33.6						
80	27.7						
100	33.5	40	6.5	-29.0	-62.5	-20.0	-53.5
125	36.1	43	6.9	-26.0	-62.1	-20.0	-56.1
160	39.7	46	6.3	-23.0	-62.7	-18.0	-57.7
200	45.1	49	3.9	-21.0	-66.1	-18.0	-63.1
250	49.8	52	2.2	-19.0	-68.8	-15.0	-64.8
315	52.7	55	2.3	-17.0	-69.7	-14.0	-66.7
400	56.0	58	2.0	-15.0	-71.0	-13.0	-69.0
500	62.1	59	-	-13.0	-75.1	-12.0	-74.1
630	66.5	60	-	-12.0	-78.5	-11.0	-77.5
800	69.5	61	-	-11.0	-80.5	-9.0	-78.5
1000	70.2	62	-	-10.0	-80.2	-8.0	-78.2
1250	70.8	63	-	-9.0	-79.8	-9.0	-79.8
1600	73.1	63	-	-9.0	-82.1	-10.0	-83.1
2000	74.4	63	-	-9.0	-83.4	-11.0	-85.4
2500	76.5	63	-	-9.0	-85.5	-13.0	-89.5
3150	81.8	63	-	-9.0	-90.8	-15.0	-96.8
4000	82.9						
5000	82.9						
		Sum =	30.1	R _{A,1} =	56.3	R _{A,2} =	50.0
		R _w =	59	C =	-3	C _{tr} =	-9

Rw(C;Ctr) = 59(-3;-9)

 $\begin{array}{l} Rw \; (C \; ; \; Ctr \; ; \; C50\text{-}3150 \; ; \; Ctr \; ; \; 50\text{-}3150) \; = \; 59 \; (\text{-}3 \; ; \; \text{-}9 \; ; \; \text{-}4 \; ; \; \text{-}14) \\ Rw \; (C \; ; \; Ctr \; ; \; C100\text{-}5000 \; ; \; Ctr \; ; \; 00\text{-}5000) \; = \; 59 \; (\text{-}3 \; ; \; \text{-}9 \; ; \; \text{-}2 \; ; \; \text{-}9) \\ Rw \; (C \; ; \; Ctr \; ; \; C50\text{-}5000 \; ; \; Ctr \; ; \; 50\text{-}5000) \; = \; 59 \; (\text{-}3 \; ; \; \text{-}9 \; ; \; \text{-}3 \; ; \; \text{-}14) \end{array}$

Note: The calculations in ISO 717-1 are performed based on assumed equivalency of the ASTM and the corresponding ISO test methods. The test herein is performed according to the ASTM standards. Orfield Laboratories *does not* hold accreditation for ISO 140 or ISO 717 under their NVLAP scope of accreditation.

The spectrum adaptation terms C and C_{tr} characterize performance against two specific sound sources, A-weighted pink noise and A-weighted traffic noise respectively. The standard ISO 717-1 includes a discussion of "Use of Spectrum Adaptation Terms" in Annex A (informative).

Each spectrum adaptation term may additionally be reported with extended frequency bands included. A calculation for the primary frequency range is shown above, but all available extended-frequency calculations were performed to compare against corresponding ratings of other specimens

RIVILAG	
NVLAP Lab Code 200248-0	